Posts

Showing posts from February, 2019

Parallel Processing – How to Verify It

Image
In my previous post I contrasted the qualitative difference between animal space use under parallel processing (PP) and the standard, mechanistic approach. In this post I take the illustration one step further by illustrating how PP – in contrast to the mechanistic approach – allows for the simultaneous execution of responses and goals at different time scales. This architecture is substantially different from the traditional mechanistic models, which are locked into a serial processing kind of dynamics. This crucial difference in modelling dynamics allows for a simple statistical test to differentiate between true scale-free movement and look-alike variants; for example, composite random walk that is fine-tuned towards producing apparently scale-free movement.

First, recall that I make a clear distinction between a mechanistic model and a dynamic model. The former is a special case of a dynamic model, which is broader in scope by including true scale-free processing; i.e., PP. In m…

The Inner Working of Parallel Processing

Image
The concept of scale-free animal space use becomes increasingly difficult to avoid in modeling and statistical analysis of data. The empirical support for power law distributions continue to pile up, whether the pattern appears in GPS fixes of black bear movement or in the spatial dispersion of a population of sycamore aphids. What is the general class of mechanism, if any? In my approach into this challenging and often frustrating field of research on complex systems, one particular conjecture – parallel processing (PP) – percolates the model architecture. PP requires a non-mechanistic kind of dynamics. Sounding like a contradiction in terms? To illustrate PP in a simple graph, let’s roll dice!

The basic challenge regards how to model a process that consists of a mixture of short term tactics and longer time (coarser scale) strategic goals. Consider that the concept of “now” for a tactical response regards a temporally finer-grained event than “now” at the time scale for executing a …